

American Competitiveness Institute

JGPP / JCAA LEAD FREE SOLDERING PROGRAM
Salt Atmosphere, Temperature Humidity, and
Mechanical Shock Testing Results
February 9, 2006

JG-PP / JCAA ACI Environmental Testing

Agenda

- Salt Atmosphere
- Temperature Humidity
- Mechanical Shock Test I
- Mechanical Shock Test II
- Conclusions

JG-PP / JCAA Salt Atmosphere Testing

- Test Procedure

Boards Tested

- SnPb Boards: Serial Numbers 35, 36, 37
- SnAgCu Boards: Serial Numbers 104, 105, 106
- SnAgCuBi Boards: Serial Numbers 143, 144, 145

Based on ASTM B117 Test Method for 48 hours

- 35 °C ambient with 15 psi pressure
- 5% salt aqueous solution
- Checked continuity on all packages
- Found some continuity failures prior to the test
- Visual inspection for corrosive residue

Salt Atmosphere Testing Chamber

JG-PP / JCAA Salt Atmosphere Testing

- Test Results

All Passed Salt Atmosphere Testing

Found no failures after test

- Board 104: Component U35: Open Circuit
- Board 104: Component U56: Open Circuit
- Board 105: Component U3: Improper Wired Circuit

Board 104 Component U35

Board 104 Component U56

Board 105 Component U3

JG-PP / JCAA Temperature Humidity Testing

- Test Procedure

Boards Tested

- SnPb Boards: Serial Numbers 38, 39, 40
- SnAgCu Boards: Serial Numbers 107, 108, 109
- SnAgCuBi Boards: Serial Numbers 146, 147, 148

Based on MIL-STD 810F; Test Method 507.4

- Checked continuity on all packages
- Found some failures prior to the test
- Visual inspection

Temperature Humidity Testing Chamber

JG-PP / JCAA Temperature Humidity Testing

- Test Results

All Passed Temperature Humidity Testing

Found no failures after test

- Board 38: Component U49: Open Circuit
 - Broken Wire Bond

Board 108: Component U44: Open Circuit

Board 38 Component U49

- Mechanical Shock Test - I

- Mechanical Shock I Test Procedure
 - MIL-STD 810F; Method 516.5; Procedure 1
 - Hardware tested in X, Y, and Z axes
 - Crash hazard Test for flight equipment

Boards Tested

- SnPb Boards: Serial Numbers 26, 27, 62, 63
- SnAgCu Boards: Serial Numbers 95, 96, 151, 168
- SnAgCuBi Boards: Serial Numbers 134, 135, 196, 197

- Mechanical Shock Test - I

Mechanical Shock – I Test Procedure

Step	Test	Initial G	Slope	Peak G	Ts (ms)	Cross- Over Freq.	Z-axis (thru- thickness)	X- axis	Y- axis	Total Shock
1.1	Functional test for flight equipment	4.5	6	20	15-23	45	3	3	3	9
1.2	Functional test for ground equipment	8.5	6	40	15-23	45	3	3	3	9
1.3	Crash Hazard test for flight equipment	9	6	75	8-13	80	3	3	3	9
1.4	Crash Hazard test for flight equipment	9	6	75	8-13	80	100	100	100	300

Hardware Tested In X, Y, And Z Axes

- Mechanical Shock Test - I

Continuity Testing

- Performed before and after each round of tests
- Confirmed failures from Event Detectors
- Determine intermittent failures

Hardware Monitoring: Anatech Event Detector

- Continuous monitoring during testing
- Detect electrical interruption lasting greater than 0.2 μsec
- Detect continuity interruption \geq 300 Ω up to 1000 Ω
- Record electrical events every 30 seconds

Intermittent Failure Definition

- Component fails test level but passes subsequent level
- Considered a failure at subsequent level
- Captured components with intermittent failures

- Mechanical Shock Test - I

Equipment Set-up

Ling Electronics B335 Vibration Systems
Courtesy of BAE Systems, Lansdale, Pennsylvania

- Mechanical Shock Test - I Results

- Mechanical Shock Test - I Results

Intermittent Failures Found at Level 1.4

- Mechanical Shock Test - I Results

- Mechanical Shock Test - I Results

- Mechanical Shock Test - I Conclusions

Test Results

- SnPb: No Failures
- SnAgCu: No Failures
- SnAgCuBi: Failures on all axis tested
 - TQFP-208: Component U3
 - TSOP-50: Component U62

Conclusions

- SnPb and SnAgCu passed Mechanical Shock test
- SnAgCuBi: 4 failures detected
 - Component U3 continues to fail as in similar tests performed
 - Can be applied to other packages

- Mechanical Shock Test - II

- Mechanical Shock Test II Test Procedure
 - Modified version of MIL-STD 810F; Method 516.5; Procedure 1
 - Hardware tested to failure in Z-Axis only
 - More Severe and Endurance type test
- Boards Tested
 - SnPb Boards: Serial Numbers 28, 29, 64, 65
 - SnAgCu Boards: Serial Numbers 97, 98, 170, 171
 - SnAgCuBi Boards: Serial Numbers 136, 137, 198, 199

Mechanical Shock Test – II

Mechanical Shock – II Test Procedure

Mechanical Shock Test - II

Continuity Testing

- Performed before and after each round of tests
- Confirmed failures from Event Detectors
- Determine intermittent failures

Hardware Monitoring: Anatech Event Detector

- Continuous monitoring during testing
- Detect electrical interruption lasting greater than 0.2 μsec
- Detect continuity interruption \geq 300 Ω up to 1000 Ω
- Record electrical events every 30 seconds

Intermittent Failure Definition

- Component fails test level but passes subsequent level
- Considered a failure at subsequent level
- Captured components with intermittent failures

Mechanical Shock Test - II

Intermittent SnPb Failures Found at Level 2.6 (40%)

Mechanical Shock Test - II

Intermittent SnPb Failures Found at Level 2.6 (52.5%)

Mechanical Shock Test - II

Intermittent SnPb Failures Found at Level 2.6 (50%)

PDIP-20 Mechanical Shock Test – II

Component PDIP-20 Failures

Mechanical Shock Test - II

Intermittent SnPb Failures Found at Level 2.6 (35%)

Mechanical Shock Test - II

Mechanical Shock Test - II

JCAA / JG-PP Mechanical Shock Test-II Component: CLCC-20

■ SnPb + SnPb ■ SnPb + SAC ■ SAC + SAC ■ SAC+SnPb ■ SnPb + SACB ■ SACB + SACB ■ SACB+SnPb

Intermittent SnPb Failures Found at Level 2.6 (45%)

Mechanical Shock Test – II Conclusions

- Initial Evaluation: Assuming Failures at the solder joints
 - SnPb Performed Better Than SnAgCu and SnAgCuBi
 - Lead Free Solder failures most prominent after Level 2.3
- Intermittent Failures
 - Intermittent Failure Definition
 - Component failed at one level, passes in subsequent level
 - Considered a failure
 - Kept track of individual component performance
 - SnPb had high levels of Intermittent Failures
 - ~ 50% of all components tested had intermittent failures
 - Most prominent at Level 2.6

Mechanical Shock Test - II

FMA

- One board from each solder type evaluated
 - Visual microscope
 - and X-ray inspection
 - Electrical probe testing does not pinpoint failure site
 - Dye-n-Pry
 - Microscope exam yielded solder joint surface cracks
 - Cross-section and SEM
 - Only for BGA devices

Mechanical Shock Test - II

FMA

BGA -225 Failures

aci

Top down view of board
Top Right hand Corner Area of a BGA

BGA Ball Solder Pad

Mechanical Shock Test - II

FMA

SnPb MANUFACTURED, BGA U44, PCB trace failure at BGA Ball

SnAgCu/SnAgCu, BGA U44, PCB trace failure at BGA Ball

Mechanical Shock Test - II

FMA

SnAgCu/SnAgCu, BGA U44, PCB trace failure at BGA Ball This type of failures could cause intermittent electrical failures

Mechanical Shock Test - II

FMA

SnPb MANUFACTURED, BGA U44,..

SnAgCu/SnAgCu, BGA

Solder Ball crack on the Component side, No failures of this type found but small amount of cracking seen

JG-PP / JCAA ACI Environmental Testing

- Conclusions

- Salt Atmosphere Test: Found No failures
 - SnPb, SnAgCu and SnAgCuBi considered equivalent
- Temperature Humidity Test: Found No failures
 - SnPb, SnAgCu and SnAgCuBi considered equivalent
- Mechanical Shock Test I
 - SnPb and SnAgCu passes test
 - SnAgCuBi had specific component failures (FMA needed)
- Mechanical Shock Test II
 - Overall SnPb boards outperformed SnAgCu and SnAgCuBi
 - Detailed FMA is needed to provide solder comparison
 - Limited FMA on BGA devices indicate copper traces are primary cause of failure

JG-PP / JCAA ACI Environmental Testing

- Acknowledgements

- American Competitiveness Institute
 - L. Whiteman
 - A. Vigliotti
 - B. Partee
 - R. Macapagal
 - R. Pappan
 - S. Pepe

- L. Martin
- J. Bracco

